
INTEGRATED CIRCUITS

Product data Supersedes data of 1997 Sep 29

2001 Aug 03

Philips Semiconductors

NE/SA/SE5532/5532A

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used because it has guaranteed noise voltage specifications.

FEATURES

- Small-signal bandwidth: 10 MHz
- Output drive capability: 600 Ω , 10 V_{RMS}
- Input noise voltage: 5 nV/\/Hz (typical)
- DC voltage gain: 50000
- AC voltage gain: 2200 at 10 kHz
- Power bandwidth: 140 kHz
- Slew rate: 9 V/µs
- Large supply voltage range: ±3 to ±20 V
- Compensated for unity gain

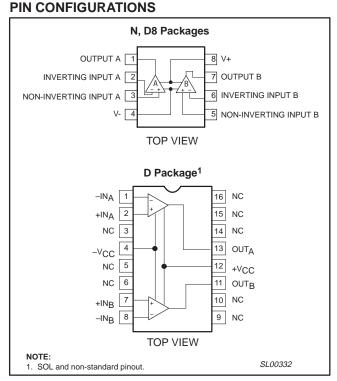


Figure 1. Pin Configurations

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Small Outline Package (SO)	0 °C to 70 °C	NE5532AD8	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	0 °C to 70 °C	NE5532AN	SOT97-1
16-Pin Plastic Small Outline Large (SOL) Package	0 °C to 70 °C	NE5532D	SOT162-1
8-Pin Small Outline Package (SO)	0 °C to 70 °C	NE5532D8	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	0 °C to 70 °C	NE5532N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	−40 °C to +85 °C	SA5532N	SOT97-1
8-Pin Small Outline Package (SO)	–55 °C to +125 °C	SE5532AD8	SOT96-1
16-Pin Plastic Dual In-Line Package (DIP)	–55 °C to +125 °C	SE5532N	SOT38-4

NE/SA/SE5532/5532A

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

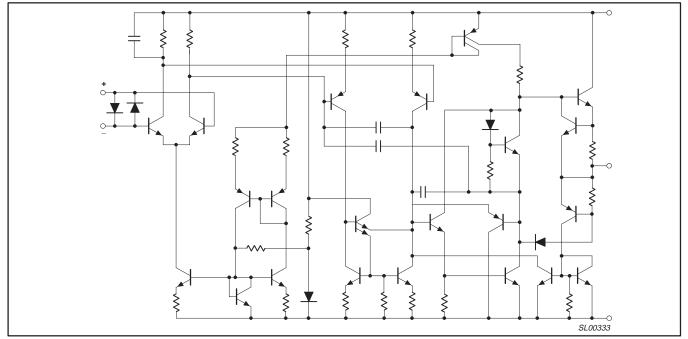


Figure 2. Equivalent Schematic (Each Amplifier)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage	±22	V
V _{IN}	Input voltage	±V _{SUPPLY}	V
V _{DIFF}	Differential input voltage ¹	±0.5	V
T _{amb}	Operating temperature range NE5532/A SA5532 SE5532/A	0 to 70 -40 to +85 -55 to +125	⊃° C ℃
T _{stg}	Storage temperature	-65 to +150	°C
Tj	Junction temperature	150	°C
P _D	Maximum power dissipation, T _{amb} = 25 °C (still-air) ² 8 D8 package 8 N package 16 D package	780 1200 1200	mW mW mW
T _{sld}	Lead soldering temperature (10 sec max)	230	°C

NOTES:

Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ±10 mA.

2. Thermal resistances of the above packages are as follows:

N package at 100 °C/W D package at 105 °C/W

D8 package at 160 °C/W

NE/SA/SE5532/5532A

DC ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C; V_S = ± 15 V, unless otherwise specified. $^{1,\ 2,\ 3}$

SYMBOL	DADAMETED	TEST CONDITIONS		SE5532//	4	NE5532/A, SA5532			UNIT
STINBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
V _{OS}	Offset voltage			0.5	2		0.5	4	mV
		Over temperature			3			5	mV
$\Delta V_{OS} / \Delta T$				5			5		μV/°C
I _{OS}	Offset current				100		10	150	nA
		Over temperature			200			200	nA
$\Delta I_{OS} / \Delta T$				200			200		pA/°C
IB	Input current			200	400		200	800	nA
		Over temperature			700			1000	nA
$\Delta I_B / \Delta T$				5			5		nA/°C
				8	10.5		8	16	mA
I _{CC}	Supply current								
		Over temperature			13				mA
V _{CM}	Common-mode input range		±12	±13		±12	±13		V
CMRR	Common-mode rejection ratio		80	100		70	100		dB
PSRR	Power supply rejection ratio			10	50		10	100	μV/V
		$R_L \ge 2 k\Omega; V_O = \pm 10 V$	50	100		25	100		V/mV
Avol	Large-signal voltage gain	Over temperature	25			15			V/mV
AVOL	Large signal voltage gain	$R_L \ge 600 \ \Omega; \ V_O = \pm 10 \ V$	40	50		15	50		V/mV
		Over temperature	20			10			V/mV
		$R_L \ge 600 \ \Omega$	±12	±13		±12	±13		
		Over temperature	±10	±12		±10	±12		
V _{OUT}	Output swing	$R_L \ge 600 \ \Omega; \ V_S = \pm 18 \ V$	±15	±16		±15	±16		V
		Over temperature	±12	±14		±12	±14		
		$R_L \ge 2 k\Omega$	±13	±13.5		±13	±13.5		
		Over temperature	±12	±12.5	<u> </u>	±10	±12.5		
R _{IN}	Input resistance		30	300		30	300		kΩ
I _{SC}	Output short circuit current		10	38	60	10	38	60	mA

NOTES:

1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6 V. Maximum current should be limited to ± 10 mA.

2. For operation at elevated temperature, derate packages based on the package thermal resistance. 3. Output may be shorted to ground at $V_S = \pm 15$ V, $T_{amb} = 25$ °C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded.

AC ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C; V_S = ± 15 V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		NE/SE5532/A, SA5532				
STWBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT		
R _{OUT}	Output resistance	$A_V = 30 \text{ dB Closed-loop}$ f = 10 kHz, R _L = 600 Ω		0.3		Ω		
	Overshoot	Voltage-follower V_{IN} = 100 mV _{P-P} C_L = 100 pF; R_L = 600 Ω		10		%		
A _V	Gain	f = 10 kHz		2.2		V/mV		
GBW	Gain bandwidth product	$C_{L} = 100 \text{ pF}; R_{L} = 600 \Omega$		10		MHz		
SR	Slew rate			9		V/µs		
	Power bandwidth	$V_{OUT} = \pm 10 \text{ V}$ $V_{OUT} = \pm 14 \text{ V}; \text{ R}_{L} = 600 \Omega,$ $V_{CC} = \pm 18 \text{ V}$		140 100		kHz kHz		

NE/SA/SE5532/5532A

ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C; V_S = ± 15 V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	N	E/SE553	32	NE/SA/SE5532A			UNIT
STWBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	
V _{NOISE}	Input noise voltage	f _O = 30 Hz f _O = 1 kHz		8 5			8 5	12 6	nV/√Hz nV/√Hz
INOISE	Input noise current	f _O = 30 Hz f _O = 1 kHz		2.7 0.7			2.7 0.7		pA/√Hz pA/√Hz
	Channel separation	f = 1 kHz; $R_S = 5 k\Omega$		110			110		dB

TYPICAL PERFORMANCE CHARACTERISTICS

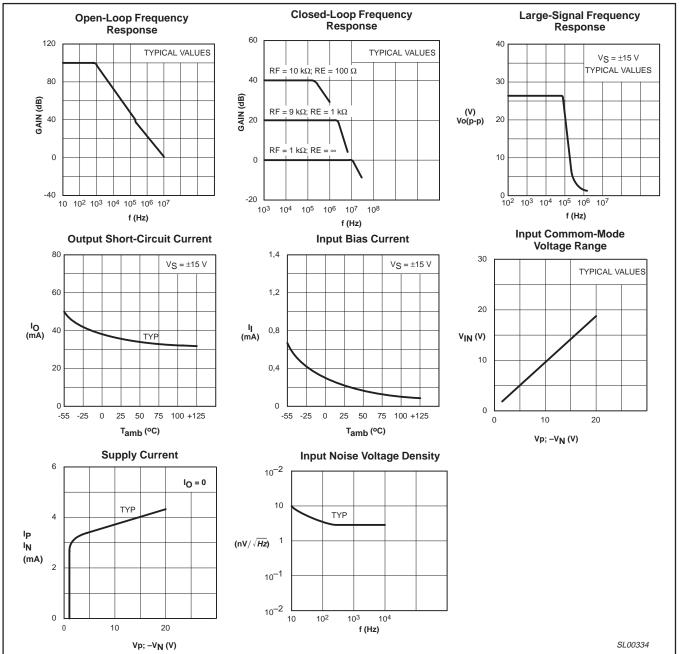


Figure 3. Typical Performance Characteristics

NE/SA/SE5532/5532A

TEST CIRCUITS

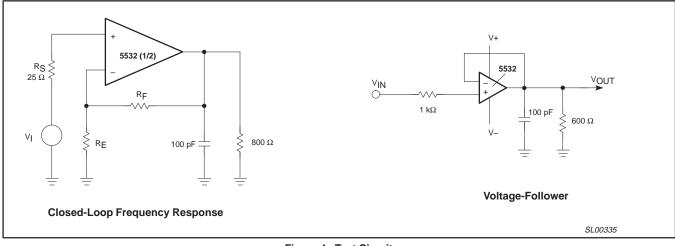
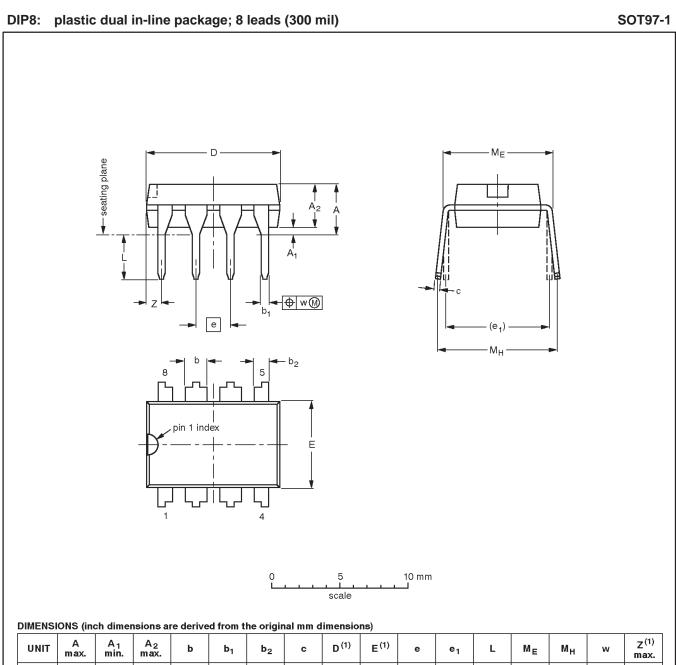
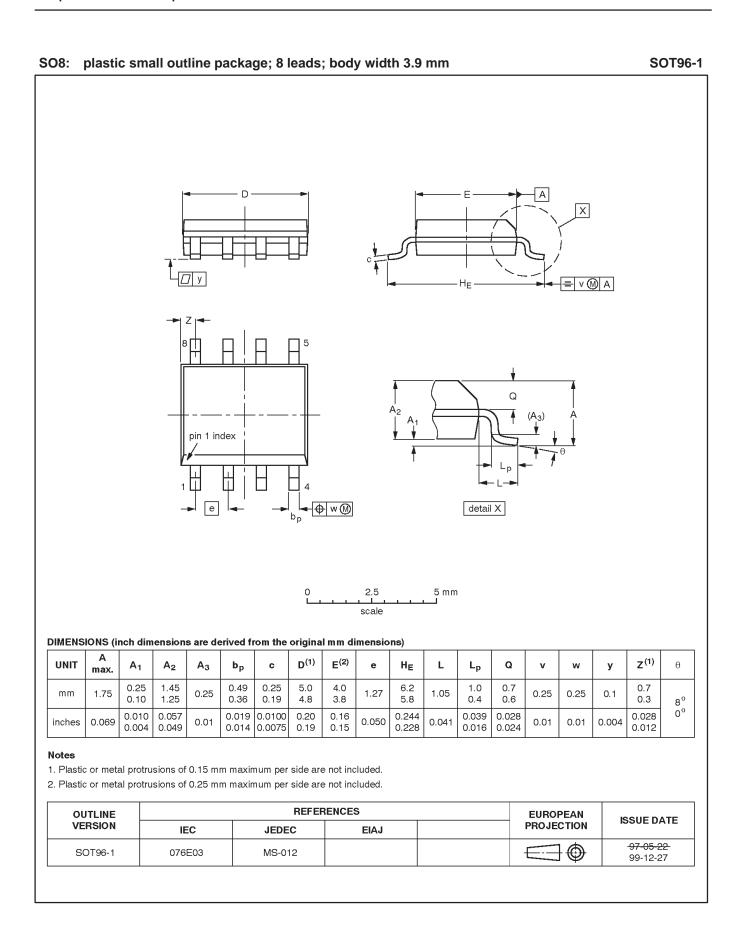



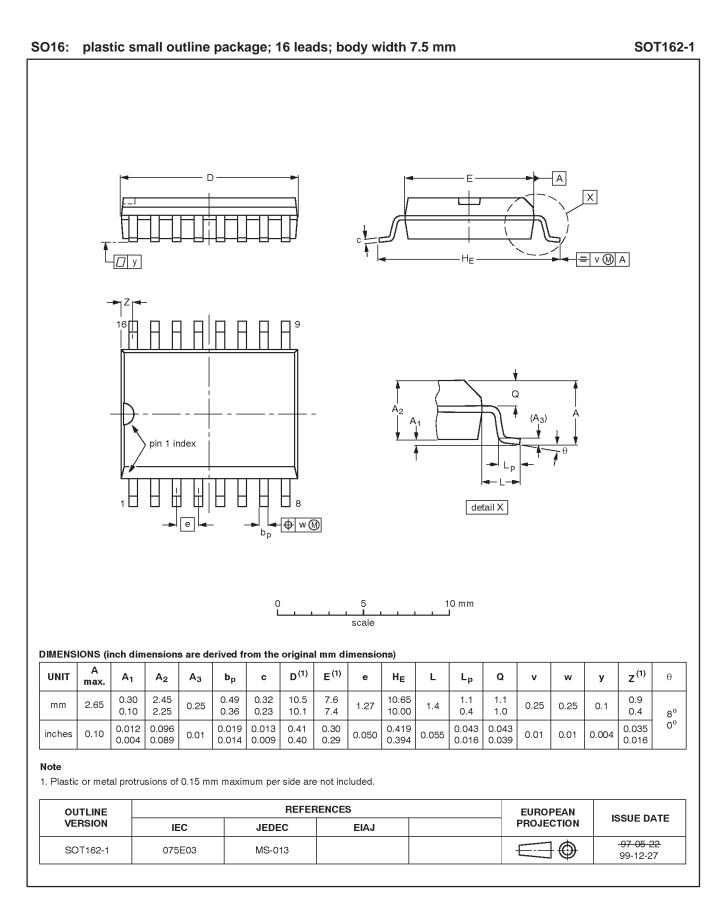
Figure 4. Test Circuits

NE/SA/SE5532/5532A

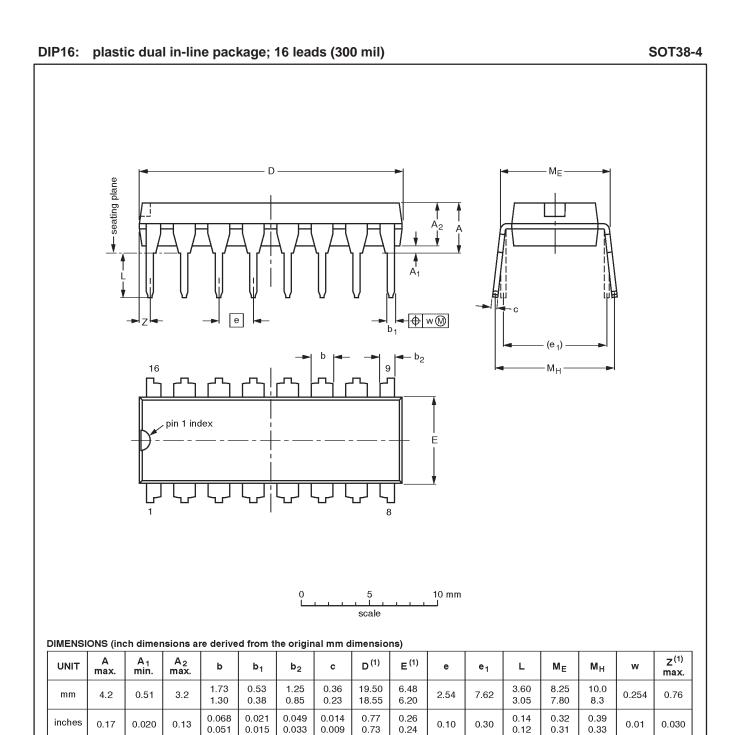
UNII	max.	min.	max.	b	Б 1	b ₂	c	D,	E	e	e ₁	L	ME	мн	w	max.
mm	4.2	0.51	3.2	1.73 1.14	0.53 0.38	1.07 0.89	0.36 0.23	9.8 9.2	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15
inches	0.17	0.020	0.13	0.068 0.045	0.021 0.015	0.042 0.035	0.014 0.009	0.39 0.36	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.045


Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN ISSUE DAT			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT97-1	050G01	MO-001	SC-504-8			-95-02-04 99-12-27	

Product data


NE/SA/SE5532/5532A

NE/SA/SE5532/5532A

NE/SA/SE5532/5532A

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-4						-92-11-17 95-01-14

NE/SA/SE5532/5532A

NOTES

NE/SA/SE5532/5532A

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 03-02

Document order number:

9397 750 09563

Let's make things better.

