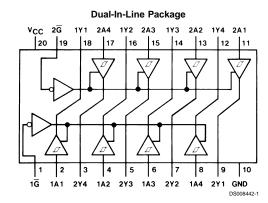
March 1998

FAIRCHILD

DM74LS244 **Octal 3-STATE Buffers/Line Drivers/Line Receivers**

General Description


These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to 133Ω .

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

Connection Diagram

- Typical I_{OL} (sink current) . 54LS . 12 mA 74LS 24 mA
- Typical I_{OH} (source current) 54LS –12 mA 74LS –15 mA
- Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns
- Typical enable/disable time 18 ns Typical power dissipation (enabled)
 - Inverting 130 mW Noninverting 135 mW

Order Number 54LS244DMQB, 54LS244FMQB, 54LS244LMQB, DM74LS244WM or DM74LS244N See Package Number E20A, J20A, M20B, N20A or W20A

Function Table

Inp	uts	Output
G	Α	Y
L	L	L
L	н	н
н	Х	Z

- L = Low Logic Level
- H = High Logic Level X = Either Low or High Logic Level

Z = High Impedance

© 1998 Fairchild Semiconductor Corporation DS008442

Absolute	Maximum	Ratings (Note 1)
----------	---------	------------------

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	54LS244			DM74LS244			Units
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

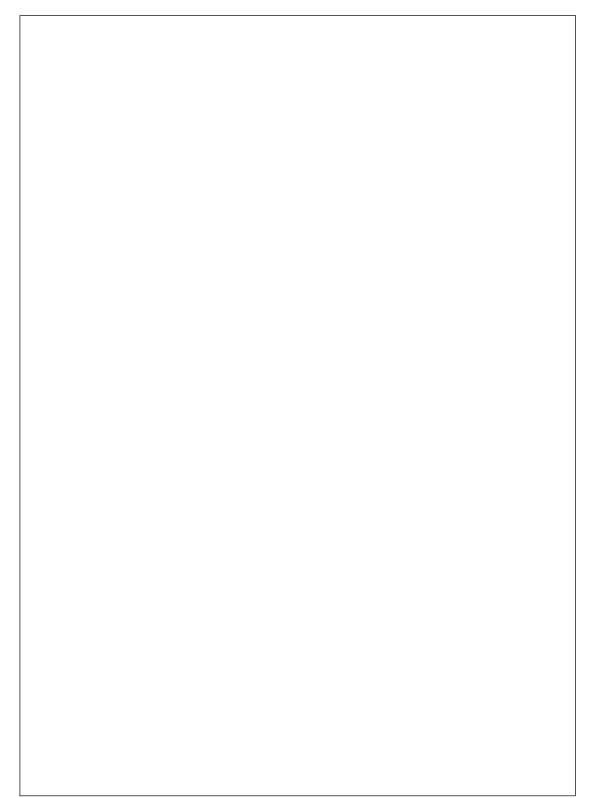
7V

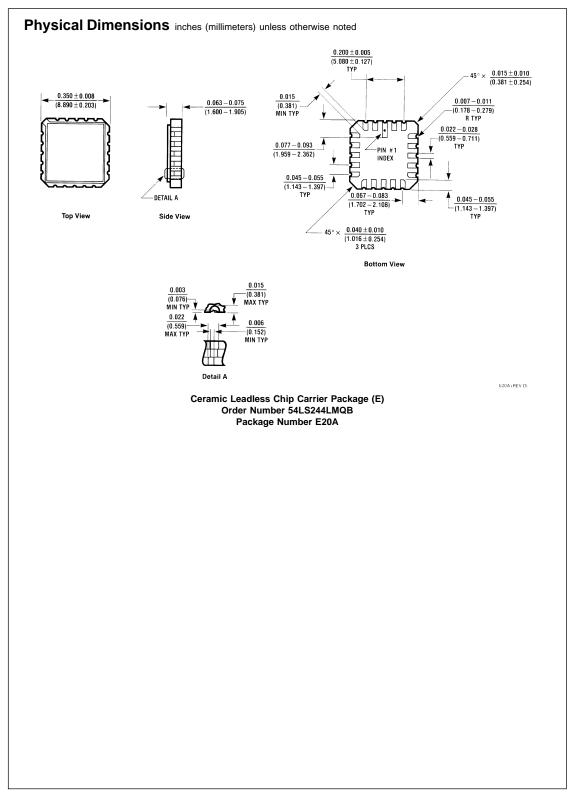
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

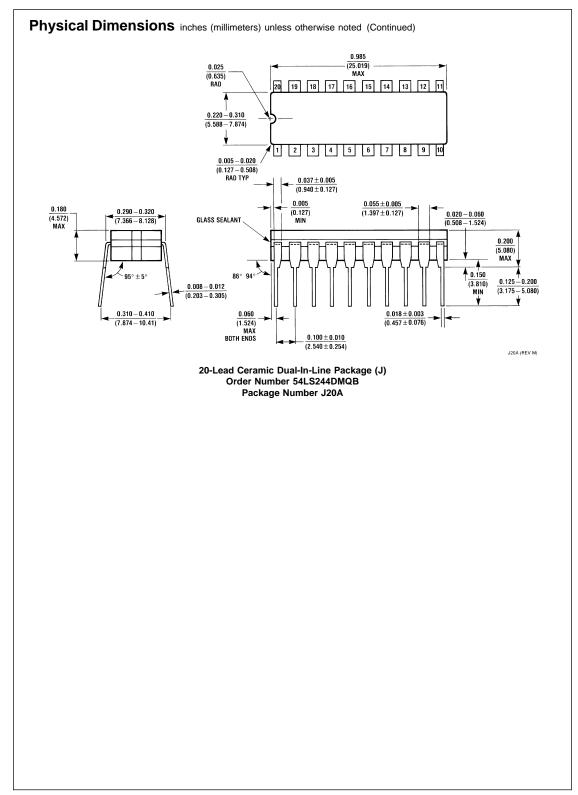
over recommended operating free air temperature range (unless otherwise noted)

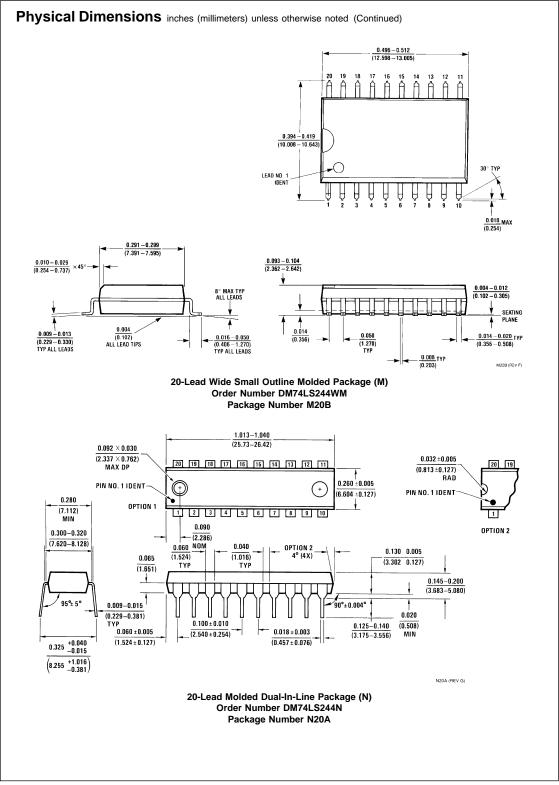
Symbol	Parameter		Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -	-18 mA				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-}) Data Inputs Only	V _{CC} = Min			0.2	0.4		V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, V_{IH} =$ $V_{IL} = Max, I_{OH} =$		DM74	2.7			
		$V_{CC} = Min, V_{IH} =$ $V_{IL} = Max, I_{OH} =$		54LS/DM74	2.4	3.4		V
		V_{CC} = Min, V_{IH} = V_{IL} = 0.5V, I_{OH} =		54LS/DM74	2			
VoL	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	54LS/DM74			0.4	
		V _{IL} = Max V _{IH} = Min	I _{OL} = Max	DM74			0.5	V
I _{ozh}	Off-State Output Current, High Level Voltage Applied	V _{CC} = Max V _{IL} = Max	V _O = 2.7V				20	μA
I _{OZL}	Off-State Output Current, Low Level Voltage Applied	V _{IH} = Min	V _O = 0.4V				-20	μA
I,	Input Current at Maximum Input Voltage	V _{CC} = Max	$V_1 = 7V (DM74)$ $V_1 = 10V (54LS)$				0.1	mA
I _{IH}	High Level Input Current	V _{CC} = Max	V ₁ = 2.7V				20	μA
IIL	Low Level Input Current	V _{CC} = Max	$V_{1} = 0.4V$		-0.5		-200	μA
I _{os}	Short Circuit Output Current	V _{CC} = Max (Note	V _{CC} = Max (Note 3)		-50 -40		-225	mA
I _{cc}	Supply Current	V _{CC} = Max,				13	23	
		Outputs Open				27	46	mA
			Outputs Disabled			32	54	

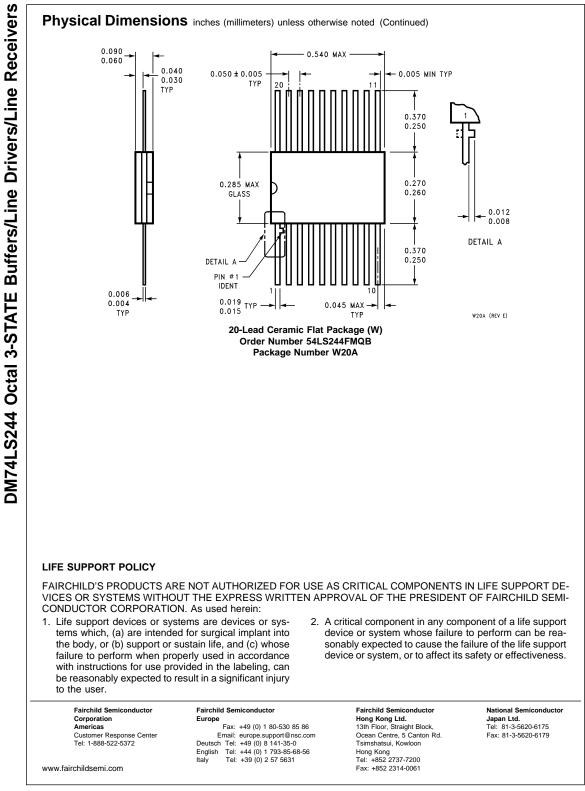

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	Conditions	54LS Max	DM74LS Max	Units
t _{PLH}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 45 pF	30	30	ns
	Low Level	$R_L = 667\Omega$			
t _{PZH}	Output Enable Time to	C _L = 45 pF	23	23	ns
	High Level	$R_L = 667\Omega$			
t _{PLZ}	Output Disable Time	C _L = 5 pF	25	25	ns
	from Low Level	$R_L = 667\Omega$			
t _{PHZ}	Output Disable Time	C _L = 5 pF	18	18	ns
	from High Level	$R_L = 667\Omega$			
t _{PLH}	Propagation Delay Time	C _L = 150 pF		21	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 150 pF		22	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 150 pF		33	ns
	Low Level	$R_L = 667\Omega$			
t _{PZH}	Output Enable Time to	C _L = 150 pF		26	ns
	High Level	$R_L = 667\Omega$			


Note 4: 54LS Output Load is $C_L = 50 \text{ pF}$ for t_{PLH} , t_{PHL} , t_{PZL} and t_{PZH} .


www.fairchildsemi.com



www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications