

Thermoelectric Cooler RC12-8

RoHS 2002/95/EC Compliant

Performance Values

Hot Side Temperature (°C)	27°C	50°C
Δ Tmax (°C-dry N ₂):	66	74
Qmax (watts):	71	78
Imax (amps):	7.4	7.4
Vmax (vdc):	14.7	16.4
AC Resistance (ohms):	1.6	

Mechanical Characteristics

Ceramic Material: Alumina (AC) Dimensions in [] are millimeters

Ordering Options

	<u> </u>
Model Number	Description
RC12-8-01	Base Model w/ leads
RC12-8-01L	Lapped Model
RC12-8-01S	Sealed Model
RC12-8-01LS	Lapped and Sealed Model

Features

- RoHS 2002/95/EC compliant
- Solid-state reliability.
- Built with high temperature solder with the ability to withstand higher assembly processing temperatures for short periods of time (<160°C).
- · Superior nickel diffusion barriers on elements
- High strength for rugged environment.
- Porched configuration for enhanced leadwire strength
- RTV sealing available (Optional)
- Lapped option available for multiple module applications.

Performance Curves

Environment: One atmosphere dry nitrogen

Hot Side Temperature: 27°C

Hot Side Temperature: 50°C

For performance information in a vacuum or with hot side temperatures other than 27°C or 50°C, consult one of our Applications Engineers.

Installation

Recommended mounting methods: Bonding with thermal epoxy or soldering with metallized ceramics. For additional information, please refer to our TEC Installation Guide.

Operation Cautions

For maximum reliability, storage and operation below 85°C in a non-condensing environment is recommended. To minimize thermal stress, use linear/proportional temperature control or a similar method rather than an ON/OFF method.